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Biogeographical studies are often based on a statistical analysis of data sampled in a

spatial context. However, in many cases standard analyses such as regression models

violate the assumption of independently and identically distributed errors. In this ar-

ticle, we show that the theory of wavelets provides a method to remove autocorre-

lation in generalized linear models (GLMs). Autocorrelation can be described by

smooth wavelet coefficients at small scales. Therefore, data can be decomposed into

uncorrelated and correlated parts. Using an appropriate linear transformation, we are

able to extend GLMs to autocorrelated data. We illustrate our new method, called the

wavelet-revised model (WRM), by applying it to multiple regression with response

variables conforming to various distributions. Results are presented for simulated data

and real biogeographical data (species counts of the plant genus Utricularia [bladder-

worts] in grid cells throughout Germany). The results of our WRM are compared with

those of GLMs and models based on generalized estimating equations. We recom-

mend WRMs, especially as a method that allows for spatial nonstationarity. The tech-

nique developed for lattice data is applicable without any prior knowledge of the real

autocorrelation structure.

Introduction

Biogeographical studies are often based on a statistical analysis of data sampled in a

spatial context. The analysis of such spatial data is complicated by spatial auto-

correlation (Cressie 1993; Legendre 1993; Lichstein et al. 2002). Positive spatial

autocorrelation occurs when adjacent data points (i.e., data sampled at adjacent

locations) are more likely to be similar than distant ones. Unfortunately, standard

methods such as generalized linear models (GLMs) may yield wrong results

for hypothesis testing, because the presence of autocorrelation violates the basic

assumption of independently and identically distributed (i.i.d.) errors, and hence
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inflates type I errors. This outcome has been demonstrated by simulation studies

(Legendre et al. 2002). A variety of methods have been developed to correct the

effects of spatial autocorrelation in normal linear models, but only a few are ap-

plicable for nonnormally distributed response variables. Dormann et al. (2007)

present an overview of such modeling approaches. They state that the most flexible

methods applicable to non-normal distributions are spatial generalized linear

mixed models (GLMMs), generalized estimating equations (GEEs; see also Carl

and Kühn 2007), and spatial eigenvector mapping (SEVM; see also Griffith and

Peres-Neto 2006), whereas the autocovariate regressions tend to perform poorly

with regard to parameter estimates. Both SEVM and autocovariate regressions seek

to capture latent spatial dependency in additional covariates. In autocovariate

regression models, however, the application to non-Gaussian responses is prob-

lematic due to an intractable normalizing constant. To circumvent this complica-

tion, Markov chain Monte Carlo (MCMC) maximum likelihood estimation

procedures need to be used (Kaiser and Cressie 1997; Huffer and Wu 1998). SEVM

models are based on a spatial filtering methodology; a geographic structure matrix

is diagonalized, and a subset of the resulting eigenvectors is added as synthetic

explanatory variables in a multiple regression (Getis and Griffith 2002; Griffith

2003). The issue, however, is that a computationally intensive model selection

procedure may be needed to select the best subset of eigenvectors.

In this article, we propose an alternative strategy of spatial filtering to circum-

vent these problems. Here, the pre-filtering process is carried out by means of

wavelets instead of eigenvectors and without any additional covariates. Accord-

ingly, our aim is to present a wavelet analysis that removes the effects of spatial

autocorrelation in multiple regression. This wavelet analysis is also applicable to a

regression in which a response variable has a non-normal distribution. Therefore, it

is an extension of the GLM. Fadili and Bullmore (2001) provide a wavelet-based

method for linear regressions in the context of autocorrelated errors, but only for

normal linear models. They apply their method to neurophysiological time series.

The main statistical use of wavelets, however, has been in non-parametric regres-

sion, noise removal, time-frequency analysis, and digital image compression,

which are quite different issues (e.g., Nason and Silverman 1995; Bruce and Gao

1996). With respect to biogeographical or ecological applications, wavelet analysis

seems to be a relatively unemployed tool (Bradshaw and Spies 1992; Dale 1999;

Dale et al. 2002; Keitt and Urban 2005; Xiangcheng et al. 2005; Keitt 2007).

Our aim is to introduce wavelets for autocorrelation removal in GLMs. This

type of regression is known as parametric regression, because it is based on a model

that requires the estimation of a finite number of parameters. This concept is quite

different from nonparametric regression, which allows for denoising and adapts to

unknown smoothness. Wavelet techniques provide an effective tool for nonpara-

metric regression. Here denoising is done by wavelet shrinkage; that is, by thresh-

olding techniques in the wavelet domain. Flandrin (1992) shows the decorrelation

property of wavelets. He derives formulas for the correlation structure of wavelet
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coefficients; that is, in the wavelet domain. Furthermore, Johnstone and Silverman

(1997) provide an extension of thresholding methods to deal with correlated data.

They recommend level dependent thresholding for denoising. Our case of para-

metric regression, however, is different in various aspects. First, denoising by means

of wavelets is not what we want to do here. Instead, the amount of error or noise is

estimated by the parametric regression itself. Second, thresholding for wavelet co-

efficients is not what we are allowed to do. Thresholding would alter estimates for

parameters. Instead, projection into an orthogonal subspace specified by a linear

wavelet transform ensures that estimates are unaltered. Third, decorrelation for the

wavelet coefficients is not what we need here. Instead, errors should be uncorre-

lated in the data domain. We demonstrate how correlated parts of data are removed

by total exclusion of specific orthogonal components.

To the best of our knowledge, wavelets have not been used to remove spatial

autocorrelation in GLMs. While we have shown the applicability of wavelets pre-

viously with specific error distributions (Carl, Dormann, and Kühn 2008; Carl and

Kühn 2008), we principally extend the method here to the GLM. Our previous

papers evaluate the performance of our models through comparisons of regression

parameters (mean, variance), correlograms, and error calibration curves. Here, we

systematically investigate the potential of wavelet-revised models (WRMs) regard-

ing efficient parameter estimation and valid testing. We analyze the efficiency of

parameter estimators and the validity of testing procedures as functions of both the

strength of autocorrelation and the sample size. Additionally, we study how the

choice of appropriate wavelets and levels makes an impact on the results.

Our new technique, called the WRM, is developed for (regularly gridded) lat-

tice data. It is applicable without any prior knowledge of the real autocorrelation

structure. Our method is demonstrated by its application to simulated datasets. We

compare WRMs to GLMs and GEEs for normal, binary, and Poisson data. Moreover,

the WRM is illustrated by its application to a real large-scale spatial dataset com-

prising the geographic distribution of a plant genus in Germany.

Methods

The quasi-score equation

In cases of correlated observations, the score equation of a GLM can be extended to

the GEE, UGEE ¼ ðMXÞ0V�1ðy� lÞ ¼ 0, where y is an (n � 1) vector of responses, X

is an (n � p) matrix of predictors, and M ¼ diagfqmi=qZig is a diagonal matrix

(Dobson 2002, p. 202; Myers, Montgomery, and Vining 2002, p. 202). Here the

(canonical) link function is gðmiÞ ¼ x0ib ¼ Zi; i ¼ 1; 2; . . . ; n; with the expected

value of the response being EðyiÞ ¼ mi, n is sample size, and b is a (p � 1)vector of

unknown parameters.

The variance-covariance matrix can be written as V ¼ A1=2RA1=2; where A ¼
diagfviig ¼ diagfvarðyiÞg is a diagonal matrix and R ¼ E½A�1=2ðy� lÞðy� lÞ0A�1=2�
is the correlation matrix. Thus, an alternative way to write the score vector is
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UGEE ¼ ðW1=2XÞ0R�1A�1=2ðy� lÞ; where W ¼ diagfv�1
ii ðqmi=qZiÞ2g denotes a di-

agonal weight matrix.

Generalizing this score according to a linear transformation P from generalized

least-squares theory yields the transformations A�1=2ðy� lÞ ! PA�1=2ðy� lÞ and

W1=2X! PW1=2X; where P is an (n � n) matrix. Here the correlation matrix is

transformed as follows: R! E ½PA�1=2ðy� lÞðy� lÞ0A�1=2P0� ¼ PRP0: Assume that

P is chosen to decorrelate the model; that is, that the transformed correlation matrix

is approximately the identity matrix I. Using PRP0 ¼ I, the score equation can be

simplified to the following transformed equation:

U ¼ ðPW1=2XÞ0 PA�1=2ðy� lÞÞ ¼ 0 ð1Þ

A vector U is identified as a ‘‘quasi-score function’’ provided that the following

three properties hold (McCullagh and Nelder 1989): (i) the vector U has a multi-

variate normal distribution, at least asymptotically; (ii) its expected value is

EðUÞ ¼ 0; and (iii) its variance-covariance matrix is equivalent to the negative ex-

pected value of the partial derivatives of U with respect to b; that is,

EðUU0Þ ¼ �E qUðbÞ=qb½ �:Condition (ii) is fulfilled because EðyÞ ¼ l: If we assume

that PRP0 ¼ I, then the information matrix is

i ¼ EðUU0Þ ¼ ðPW1=2XÞ0ðPW1=2XÞ ð2Þ

and condition (iii) is fulfilled. To verify condition (i), we may assume that there is

only one parameter b. Then UGLM=
ffiffiffiffiffiffiffiffiffi
iGLM

p
is normally distributed, and U=

ffiffi
i
p

is a

linear combination of UGLM=
ffiffiffiffiffiffiffiffiffi
iGLM

p
. Thus, U=

ffiffi
i
p

is normally distributed as well.

Moreover, if PRP0 ¼ I, then U=
ffiffi
i
p
� Nð0; 1Þ, at least asymptotically.

Consequently, U (1) is a quasi-score function. Thus U and i can be used for the

method of scoring. Therefore, we obtain the iterative solution

bðmÞ ¼ ððPW1=2XÞ0PW1=2XÞ�1ðPW1=2XÞ0PW1=2z ð3Þ

where

PW1=2z ¼ PW1=2Xbðm�1Þ þ PA�1=2ðy� lÞ ð4Þ

From equation (2), the asymptotic variance-covariance matrix of b is given by

varðbÞ ¼ i�1 ¼ ððPW1=2XÞ0PW1=2XÞ�1. If X and PW1=2X have full rank, then equa-

tion (3) has a unique solution.

To summarize the above: we derive an extension of the GLM, including tools

for parameter estimation and statistical inference, from a quasi-score concept using

a linear transformation. Recall that in standard GLM theory, the responses are as-

sumed to be independent, and thus the variance-covariance matrix of A�1=2ðy� lÞ
is equivalent to the identity matrix I. If P ¼ I, then our quasi-score concept is

equivalent to a standard GLM result. In general, however, responses as well as

predictors and errors are correlated rather than independent random variables.

Therefore, it is desirable to revise data and to remove autocorrelations. Our aim is

to specify the matrix P to ensure that the variance-covariance matrix of the variables
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PA�1=2ðy� lÞ is close to the identity matrix I. We demonstrate that one can achieve

this goal by using wavelet decomposition. Our new method, the WRM, introduced

in a more generalized framework in the subsection ‘‘The WRM,’’ provides this

revision of data.

A two-dimensional (2-D) wavelet approach

One objective of our study is to analyze data points that are spatially distributed.

For this purpose we use the 2-D wavelet approximation of a function Fðx; yÞ, as

follows (Bruce and Gao 1996, p. 44; Shumway and Stoffer 2000):

Fðx; yÞ ¼
X3

m¼1

XJ

j¼1

X
kx ;ky

dm
j;kx ;ky

Cm
j;kx ;ky

ðx; yÞ

þ
X
kx ;ky

sJ;kx ;ky
FJ;kx ;ky

ðx; yÞ
ð5Þ

where the functions Cm
j;kx ;ky

and FJ;kx ;ky
are given orthogonal wavelet functions gen-

erated from mother and father wavelets, respectively. Scaling and translation pro-

duce wavelets to different levels j and shifts k—that is, dilations and locations—

whereas m corresponds to different spatial directions. These three directions cor-

respond to wavelets that operate horizontally, vertically, or diagonally. The wave-

lets C are used to describe the detail and high-frequency parts of given data,

whereas the wavelets F are used to describe the smooth and low-frequency parts.

Accordingly, the wavelet coefficients d represent the detail part, while the coeffi-

cients s represent the smooth part of F (Müller et al. 2003). Multiresolution analysis

is a decomposition of equation (5) into orthogonal image components:

Fiðx; yÞ ¼ Dm
j ¼

X
kx ;ky

dm
j:kx ;ky

Cm
j;kx ;ky

ðx; yÞ; i ¼ 1; . . . ; 3J ð6Þ

F3Jþ1ðx; yÞ ¼ SJ ¼
X
kx ;ky

sJ;kx ;ky
FJ;kx ;ky

ðx; yÞ ð7Þ

Thus the function F can be reconstructed by a sum of all 3J11 image compo-

nents Fðx; yÞ ¼
P3Jþ1

i F iðx; yÞwhere J is the resolution level (or number of scales).

The discrete wavelet transform calculates the coefficients for a finite set of

discrete data points. It is equivalent to a matrix multiplication. Thus, the 2-D dis-

crete wavelet transform T enables us to transform discrete image data F—that is, a

matrix F—into a matrix of wavelet coefficients TF. Matrix TF consists of all wavelet

coefficients in a specific hierarchical order. Without loss of generality, we can as-

sume that both are ð2J � 2JÞmatrices.

This decomposition allows us to analyze 2-D data such as a matrix or a geo-

graphical pattern of an ecological or an environmental variable. A 2-D approach

can be applied to both response variables and individual predictors in multiple

regression models if the components of these variables occur in a spatial context;

for example, if these components are sampled in a plane. Thus, we must convert
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these vectors into matrices that reflect the special spatial form; then the 2-D trans-

form can be applied to each matrix built in this way. Finally, we revert to vectors

that allow us to continue as usual in linear regression analysis.

The WRM

For biomedical time series, Meyer (2003) shows that the smooth trend belongs to a

subspace spanned by large-scale wavelets. Similarly, we expect that we can detect

and extract the feature of autocorrelation by means of wavelet decomposition. In

particular, autocorrelation can be described by smooth wavelet coefficients at a

small scale; that is, at resolution level 1 or 2. Consequently, these coefficients

should be set to zero to capture only the noncorrelated part. Therefore, three steps

are executed in rotation: wavelet transform, wavelet coefficient selection, and back

transform. For a good approximation, transform

F! PF ¼
X3J

i

Fi ð8Þ

provides a tool to remove autocorrelation by keeping only the so-called detail ma-

trices Dm
j defined by equation (6) and by removing the smooth matrix SJ given by

equation (7). If this data preparation is carried out by means of Haar wavelets, for

example, then it has a very intuitive meaning. This procedure basically averages

data values within squared subareas and subtracts this average from the data values

to remove autocorrelation (Carl, Dormann, and Kühn 2008). If transform P is per-

formed at a small scale—that is, for J 5 1 or J 5 2—then the subareas are small and

autocorrelation is reduced to nearly zero, as measured by Moran’s I value (Carl and

Kühn 2008). Therefore, equations (3) and (4) in conjunction with the meaning of P

given by equation (8) form our new method, WRM (see Appendix). If observations

are originally autocorrelated, the use of these equations leads to improved param-

eter estimates compared with standard GLM results.

Three issues deserve particular mention. First, in the case where the matrix P is

equal to T, we already get an approximately diagonalized variance-covariance

matrix in the wavelet domain. This is called the whitening or decorrelating property

of the discrete wavelet transform. However, as a consequence of this operation,

different variances for detail and smooth coefficients would arise (Fadili and Bull-

more 2001). This causes the new problem to get estimates for the variances of the

coefficients at each level. Robust estimates are hard to find, in particular, if non-

Gaussian distributions are considered. Second, our approach, which contains

wavelet coefficient selection and back transform, circumvents this problem by

means of equation (8). However, to gain this advantage, we have to use an (n � n)

matrix P that is rank-deficient, which implies that condition PRP0 ¼ I cannot exactly

be fulfilled. It still holds approximately though. Third, if X has full rank and the

number of observations n is much greater than the number of predictors p, then PX

and PW1=2X have full rank as well. Therefore, our quasi-score concept leading to

equations (3) and (4) can be based on P given by equation (8).
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Application

Implementing the WRM

Our computations are based on software packages housed in the R language and

environment for statistical computing (R Development Core Team 2006). The tools

for calculating wavelet transforms are available in the package waveslim (Whitcher

2005). We used either the functions dwt.2d and idwt.2d for discrete wavelet trans-

form and inverse discrete wavelet transform, respectively, or the function mra.2d

for multiresolution analysis.

Because of the truncation to finite sets in discrete wavelet transforms, boundary

treatment rules must be provided. In the 2-D discrete wavelet transform, type pe-

riodic is implemented for boundary conditions, causing a restriction on the sample

size. The number of rows and columns must be divisible by 2j in order to perform

dilation and location of wavelets. In general, however, one wishes to analyze sam-

ples of arbitrary size. For this reason, we decide to pad data with zeros until a

quadratic matrix of required size is reached.

To show the effectiveness of our model, we compare several WRMs with GLMs

and GEEs for normal, binary, and Poisson’s data. The tools for calculating a GEE are

available in R package gee (Carey et al. 2002) with function gee (Liang and Zeger

1986; Zeger and Liang 1986), and in R package geepack with function geese (Yan

2002; Yan and Fine 2004). Fixed and use-defined correlation structures work best

in the cases considered here (Carl and Kühn 2007; Dormann et al. 2007).

Simulation

Simulations were performed to check the models for autocorrelation effects (Ross

1997; see also Haining, Griffith, and Bennet 1983; Heagerty and Lele 1998), and

regular grids were generated for this purpose. The cells were assumed to be square.

Values for two normally distributed predictors were randomly generated. In addi-

tion, normally distributed errors were randomly generated. Both the vector of errors

and the vectors of predictors were multiplied by the transpose of the Cholesky de-

composition of a correlation matrix. This procedure creates correlated normal ran-

dom errors and predictors, enabling the calculation of correlated responses. On the

one hand, normal responses are given as the sum of a linear component and cor-

related errors. On the other hand, the following steps transform these correlated

normal variables into correlated binomial or Poisson outcomes: (i) scale to get the

standard normal distribution; (ii) transform by means of their cumulative distribu-

tion function to get a uniform distribution; and (iii) use the inverse transform

method to get binomial or Poisson outcomes.

The aforementioned correlation matrix includes specified spatial autocorrela-

tion depending on the distances between the observations. In our case, this cor-

relation is assumed to be equal for each pair of equal distance. In this way, we have

introduced an isotropic spatial autocorrelation structure by an exponential func-

tion: AC ¼ rdjh . Here djh is the Euclidean distance between center points of grid

cells, and r is the correlation parameter for nearest neighbors.
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An application to simulated data

The real parameters of our simulations are b1 5 1 and b2 5 0, that is, the linear

component consists of only the first predictor. In the models, however, the second

predictor is included as a dummy variable. To assess model performance, we an-

alyze the efficiency of parameter estimates b2 and the validity of their hypothesis

tests. The simulated datasets were generated for n 5 30-by-30 grid cells and n 5 50-

by-50 grid cells, each with autocorrelation parameters r5 0, 0.25, 0.5, and 0.75.

Our evaluations are based on 1,000 simulation runs in each case.

We consider the following models: the GLM, the GEE, and the WRM. To assess

the WRM, we utilize three different families of orthogonal wavelets: haar, d4, and

la16 (Percival and Walden 2000). This choice reflects a mixed assortment of sam-

ples for the following wavelet characteristics in the spatial domain: haar wavelets

are symmetric, block-shaped (i.e., nonsmooth), and very compact; d4 wavelets are

asymmetric, nonsmooth, and compact; la16 wavelets are nearly symmetric (i.e.,

least asymmetric), smoother, and wider. On the one hand, the application of haar

wavelets is justified because of their capability of detecting edges in the spatial

domain (Carl and Kühn 2008). This is an important aspect for minimizing border

effects. On the other hand, smoother wavelets such as d4 and, in particular, la16

have a higher number of vanishing moments and better frequency localization

properties. Therefore, they work better as high-pass filters, which is essential for

transform P. Each of the three wavelet families is combined with smooth coeffi-

cients removed at the lowest resolution levels 1 and 2. Therefore, we label the

WRM models as follows: haar-1, haar-2, d4-1, d4-2, la16-1, la16-2 (Table 1).

Alpargu and Dutilleul (2006) provide tools for an efficiency analysis of slope es-

timators. Accordingly, the mean squared error of b2 is MSE ¼
P1000

1 b2
2

� �
=1000.

Here we want to analyze efficiencies in relation to the GLM. The efficiency of any

model M is defined as Eff ðMÞ ¼ MSEðb2;MÞ=MSEðb2;GLMÞ. Therefore, if Eff(M) is

greater (smaller) than 1, then model M is less (more) efficient than the GLM. In

Table 1, we present these parameter estimate efficiencies for the models applied to

our simulated normal, binomial, and Poisson random variables. Our comparisons

emphasize the influence of sample size and strength of autocorrelation on effi-

ciency. WRM models of level 2 are more efficient than those of level 1 for weak

autocorrelation, and vice versa. WRM models of level 1 are more efficient than

those of level 2 for strong autocorrelation because the strength of autocorrelation

influences the range of autocorrelation. Furthermore, the WRM is more efficient in

estimating the parameters than the GLM for cases of strong autocorrelation. The

expectation is that the WRM is somewhat less efficient than the GEE because prior

knowledge about the form of the error variance-covariance matrix is completely

incorporated into the GEE models here. However, each of these GEE models is

computable only for small samples. Note that there is no need for such prior

knowledge in the WRM and that the sample size can be rather large.

To assess the relative performance of parameter estimates in terms of type I

errors (i.e., the probability a of falsely rejecting the null hypothesis H0: b5 0), we
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calculated the empirical probability of significance P. For this purpose, we re-

corded how often the probability value of the dummy variable was falsely esti-

mated to be less than a theoretical significance level of 0.05. Then the empirical

significance level P for 1,000 simulation runs is given by P ¼ nr=1000, where nr is

the number of rejections. A validity analysis takes into account that the standard

deviation of P is sP ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P ð1� P Þ=1000

p
(Alpargu and Dutilleul 2006). Hence we

used the confidence band P � 2sP (i.e., 0:035 < P < 0:065) as a validity condi-

tion. The results are given in Fig. 1. All plots show the empirical significance level P

calculated for the above-mentioned models and for an autocorrelation parameter r
ranging from 0 to 0.75. The methods work well when their curves coincide with the

confidence band, even for strong autocorrelation. The GLM considerably over-

estimates the true type I error, whereas both the GEE and WRM la16-2 yield very

Table 1 Results for Efficiencies of Parameter Estimates for All Models Estimated with

Normal, Binomial, and Poisson Simulated Data

Model n 5 30-by-30 n 5 50-by-50

r5 0 r5 0.25 r5 0.5 r5 0.75 r5 0 r5 0.25 r5 0.5 r5 0.75

Gaussian

GEE 1.00 0.75 0.30 0.06 — — — —

WRM haar-1 1.28 1.04 0.53 0.22 1.28 1.04 0.46 0.17

WRM haar-2 1.05 0.95 0.56 0.25 1.05 0.92 0.57 0.22

WRM d4-1 1.34 0.96 0.47 0.15 1.26 1.01 0.44 0.12

WRM d4-2 1.06 0.89 0.56 0.20 1.06 0.93 0.53 0.18

WRM la16-1 1.35 0.96 0.45 0.13 1.27 1.02 0.42 0.11

WRM la16-2 1.03 0.93 0.49 0.18 1.03 0.94 0.53 0.15

Binomial

GEE 1.00 0.92 0.59 0.28 — — — —

WRM haar-1 1.27 1.21 0.77 0.42 1.39 1.27 0.78 0.36

WRM haar-2 1.04 1.01 0.76 0.46 1.08 1.04 0.72 0.37

WRM d4-1 1.28 1.22 0.78 0.37 1.37 1.25 0.79 0.31

WRM d4-2 1.06 0.99 0.75 0.41 1.09 1.04 0.70 0.33

WRM la16-1 1.26 1.24 0.78 0.38 1.35 1.25 0.79 0.32

WRM la16-2 1.04 1.00 0.68 0.39 1.07 1.00 0.72 0.32

Poisson

GEE 1.00 0.82 0.39 0.13 — — — —

WRM haar-1 1.26 1.21 0.59 0.28 1.28 1.17 0.55 0.24

WRM haar-2 1.05 0.99 0.62 0.34 1.08 1.00 0.60 0.30

WRM d4-1 1.31 1.25 0.58 0.22 1.33 1.21 0.51 0.19

WRM d4-2 1.05 1.01 0.64 0.29 1.10 1.00 0.58 0.24

WRM la16-1 1.32 1.25 0.55 0.22 1.33 1.18 0.51 0.18

WRM la16-2 1.07 1.01 0.57 0.26 1.08 0.99 0.57 0.24

Efficiency is given as a function of sample size and strength of autocorrelation.
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good curves for binary and Poisson distributions. Although just missing the mark,

WRM d4-2 and WRM haar-1 also provide good results.

An application to the flora of Germany

In this section, we apply the wavelet-revised methods to a real macroecological

dataset. We relate environmental variables to plant species distribution in Ger-

many. Information on species distribution is available from FLORKART (see http://

www.floraweb.de), which contains species locations in a grid of 2,995 grid cells.

GLM
GEE
WRM haar−1
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Figure 1. Performance of parameter estimates in terms of type I errors as the empirical

probability of significance P of different methods for a theoretical significance level of 0.05.

The validity band is given as 0.035oPo0.065. The probabilities are calculated based on

1,000 randomly generated datasets for: (a) a Gaussian distribution, 30-by-30 grid cells; (b) a

binomial distribution, 30-by-30 grid cells; (c) a Poisson distribution, 30-by-30 grid cells; (d) a

Gaussian distribution, 50-by-50 grid cells; (e) a binomial distribution, 50-by-50 grid cells;

and (f) a Poisson distribution, 50-by-50 grid cells.
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The cells of this lattice are 100 longitude-by-60 latitude—that is, about 11-by-11 km2

in central Germany—and therefore almost square cells. Gridded datasets like these

are typical for a plethora of species distribution atlases throughout Europe.

A dataset for regression has been chosen with Poisson distributed responses;

that is, species count data of plant genus Utricularia (bladderworts), whose

ecological behavior is well known. Utricularia is a genus of carnivorous plant

species typical of mostly oligotrophic (i.e., nutrient-poor) ponds, pools, small lakes

and reservoirs, ditches, and other small water bodies in swampy, boggy, or

otherwise wet regions.

We chose three environmental variables: (i) the average altitude (in 1000 m

units) per grid cell was calculated after the ARCDeutschland500 dataset, scale

1:500,000, provided by ESRI; (ii) the average annual precipitation from 1961 to

1990 (in 1,000 mm units) using data from the German weather service (Deutscher

Wetterdienst [DWD]; homogenization and interpolation by the Potsdam Institute

for Climate Impact Research [PIK]) averaged and referenced to our grid system

within the project Modelling the Impact of Climate Change on Plant Distribution in

Germany, funded by the Federal Agency for Nature Conservation (BfN) (Badeck et

al. 2008); and (iii) the area of moor or swamp per grid cell according to the Corine

Land Cover classes (in 10 km2 units) (Statistisches Bundesamt 1997).

Wavelet-revised regression was carried out as previously described using haar,

d4, or la16 wavelets and smooth coefficients removal at resolution level 1 or 2. The

original grid cells data were padded with zeros to attain a 128-by-128 matrix. An

impact study on zero padding and border effects yields the following results: only

WRM d4-1 and WRM la16-1 provide a problematical spread of residuals toward the

periphery. The d4 or la16 wavelets need to be applied at the appropriate resolution

level. Haar wavelets, however, are less sensitive; that is, better in edge detection.

Poisson regression estimation results for Utricularia are given in Table 2. Here

the performance of the WRM can be compared with that of the GEE and of the

Table 2 Results for Estimated Regression Parameters bj and their P-values, Comparing

Different Methods for the Plant genus Utricularia in Germany Treated as a Poisson Random

Variable

Model Intercept Altitude Precipitation Moor/swamp

b0 P bA P bP P bM P

GLM � 0.63 o0.001 � 0.93 o0.001 0.44 o0.001 0.60 o0.001

GEE � 0.37 0.0035 � 0.90 o0.001 0.10 0.4790 0.46 o0.001

WRM haar-1 � 0.72 0.0069 � 1.31 0.0148 0.17 0.4928 0.44 o0.001

WRM haar-2 � 0.60 o0.001 � 0.86 0.0010 0.28 0.0772 0.46 o0.001

WRM d4-1 � 0.57 0.0821 � 1.55 0.0129 � 0.37 0.1694 0.40 0.0015

WRM d4-2 � 0.75 o0.001 � 1.52 o0.001 0.34 0.0862 0.47 o0.001

WRM la16-1 � 0.49 0.1533 � 3.23 o0.001 � 0.31 0.2492 0.40 0.0082

WRM la16-2 � 0.54 0.0103 � 1.22 0.0015 0.11 0.5864 0.45 o0.001
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GLM. For Poisson data of this sample size, a proper GEE approach is difficult to

establish. The number of correlation parameters that can be estimated in an

iterative procedure is limited. Here, we present the results of an approximation

that partly neglects correlations in GEEs. Moreover, we are able to discuss the

results on the basis of our geographical and biological knowledge. Although

Utricularia is restricted to wet areas, its count data should not be positively

correlated with the predictor precipitation since the habitats of Utricularia depend

on geology, geomorphology, and human land use, rather than on precipitation. In

fact, the GLM results are corrected by the GEE and by all WRM models in this way.

They thus provide more sensible results ecologically. The regression parameter for

precipitation is reduced, and it is no longer significant at the a5 0.05 level, as can

be seen by its P-value.

Conclusion

The main contribution of this work is the development of an extension of GLMs for

correcting data with respect to autocorrelation in a more general framework than

previously done and a demonstration of its application to relevant datasets. The

extension of GLMs is based on discrete wavelet transforms and is carried out

through a two-dimensional analysis. Thus, multiresolution analysis gives the back-

ground for autocorrelation extraction from 2-D (image) data. After describing the

model, we present an algorithm to estimate regression parameters, and we

calculate the information matrix as a tool for hypothesis testing.

Using wavelets, one is able to reduce spatial autocorrelation of regression

residuals, as can be measured by its Moran’s I value (Carl and Kühn 2008), in a

stepwise fashion. Our WRM, based on this characteristic, is shown to be more

efficient in estimating the parameters than the GLM for datasets affected by

substantial autocorrelation. The main difficulty arising from the GLM applied to

such data is that autocorrelation affects its performance in terms of type I errors (i.e.,

the probability of falsely rejecting the null hypothesis). Therefore, we analyzed

whether the WRM test statistic is valid and found that its empirical significance

levels are very close to its theoretical counterparts. For binomial and Poisson

distributed responses, for instance, we considered it best to utilize la16 wavelets at

resolution level 2. In that case, the WRM test statistic is valid even for strong and

long-range autocorrelation. Moreover, we compared the results with those of GEEs.

These latter models are useful to correct autocorrelation effects successfully when

the correlation structure is known, as in our simulated datasets. Wavelets, however,

provide a powerful method for removing autocorrelation without any prior knowl-

edge of the underlying correlation structure in lattice data.

Furthermore, by using a real biogeographical dataset and by basing the findings

not only on statistics but also on prior knowledge in ecology and geography, we

argue that the WRM results can be more plausible than the GLM results.
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We therefore suggest the use of WRMs, especially when analyzing data

observed on a regular two-dimensional lattice and characterized by large sample

size. The WRM effectively removes spatial autocorrelation with or without any

prior knowledge of the underlying correlation structure and is a computationally

very fast and efficient procedure. Moreover, it is a method that allows for spatial

nonstationarity, whereas stationarity is a basic and strong assumption for most of

the standard methods.
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Appendix

We give the following algorithm for calculating regression parameters via the

WRM:

Step 1. Find an initial estimate b0.

Step 2. Use b0 to obtain l0.

Step 3. Calculate A0; W0; Xnew ¼W
1=2
0 X; znew ¼W

1=2
0 z0:

Step 4. Create matrices for znew and all columns of Xnew according to the

spatial structure.

Step 5. Perform multiresolution analysis on these matrices.

Step 6. Sum all orthogonal image components except the last one to pick up all

detail components (and no smooth ones). This yields Pznew and PXnew.

Step 7. Transform matrices into vectors.

Step 8. Use equation (3) to estimate the regression model and to obtain the new

estimator b1.

Step 9. Substitute b1 for b0 and return to step 2.

Step 10. Continue iterating until convergence is achieved.
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